Pairing conjugate partitions by residue classes
نویسنده
چکیده
We study integer partitions in which the parts fulfill the same congruence relations with the parts of their conjugates, called conjugate–congruent partitions. The results obtained include uniqueness criteria, weight lower-bounds and enumerating generating functions. © 2007 Elsevier B.V. All rights reserved. MSC: 11P81; 11P83; 05A15
منابع مشابه
The Number of Parts in Certain Residue Classes of Integer Partitions
We use the Circle Method to derive asymptotics for functions related to the number of parts of partitions in particular residue classes.
متن کاملCranks and T -cores
New statistics on partitions (called cranks) are defined which combinatorially prove Ramanujan’s congruences for the partition function modulo 5, 7, 11, and 25. Explicit bijections are given for the equinumerous crank classes. The cranks are closely related to the t-core of a partition. Using q-series, some explicit formulas are given for the number of partitions which are t-cores. Some related...
متن کاملOn the Number of Parts of Integer Partitions Lying in given Residue Classes
Improving upon previous work [3] on the subject, we use Wright’s Circle Method to derive an asymptotic formula for the number of parts in all partitions of an integer n that are in any given arithmetic progression.
متن کاملLecture hall sequences, q-series, and asymmetric partition identities
We use generalized lecture hall partitions to discover a new pair of q-series identities. These identities are unusual in that they involve partitions into parts from asymmetric residue classes, much like the little Göllnitz partition theorems. We derive a two-parameter generalization of our identities that, surprisingly, gives new analytic counterparts of the little Göllnitz theorems. Finally,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008